Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design.
نویسندگان
چکیده
In our continuation of the structure-based design of anti-trypanosomatid drugs, parasite-selective adenosine analogues were identified as low micromolar inhibitors of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Crystal structures of Trypanosoma brucei, Trypanosoma cruzi, Leishmania mexicana, and human GAPDH's provided details of how the adenosyl moiety of NAD(+) interacts with the proteins, and this facilitated the understanding of the relative affinities of a series of adenosine analogues for the various GAPDH's. From exploration of modifications of the naphthalenemethyl and benzamide substituents of a lead compound, N(6)-(1-naphthalenemethyl)-2'-deoxy-2'-(3-methoxybenzamido)adenosine (6e), N(6)-(substituted-naphthalenemethyl)-2'-deoxy-2'-(substituted-benzamido)adenosine analogues were investigated. N(6)-(1-Naphthalenemethyl)-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (6m), N(6)-[1-(3-hydroxynaphthalene)methyl]-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (7m), N(6)-[1-(3-methoxynaphthalene)methyl]-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (9m), N(6)-(2-naphthalenemethyl)-2'-deoxy-2'-(3-methoxybenzamido)adenosine (11e), and N(6)-(2-naphthalenemethyl)-2'-deoxy-2'-(3,5-dimethoxybenzamido)adenosine (11m) demonstrated a 2- to 3-fold improvement over 6e and a 7100- to 25000-fold improvement over the adenosine template. IC(50)'s of these compounds were in the range 2-12 microM for T. brucei, T. cruzi, and L. mexicana GAPDH's, and these compounds did not inhibit mammalian GAPDH when tested at their solubility limit. To explore more thoroughly the structure-activity relationships of this class of compounds, a library of 240 N(6)-(substituted)-2'-deoxy-2'-(amido)adenosine analogues was generated using parallel solution-phase synthesis with N(6) and C2' substituents chosen on the basis of computational docking scores. This resulted in the identification of 40 additional compounds that inhibit parasite GAPDH's in the low micromolar range. We also explored adenosine analogues containing 5'-amido substituents and found that 2',5'-dideoxy-2'-(3,5-dimethoxybenzamido)-5'-(diphenylacetamido)adenosine (49) displays an IC(50) of 60-100 microM against the three parasite GAPDH's.
منابع مشابه
Selective tight binding inhibitors of trypanosomal glyceraldehyde-3-phosphate dehydrogenase via structure-based drug design.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from the sleeping sickness parasite Trypanosoma brucei is a rational target for anti-trypanosomatid drug design because glycolysis provides virtually all of the energy for the bloodstream form of this parasite. Glycolysis is also an important source of energy for other pathogenic parasites including Trypanosoma cruzi and Leishmania mexicana. The ...
متن کاملIdentification of electronic and structural descriptors of adenosine analogues related to inhibition of leishmanial glyceraldehyde-3-phosphate dehydrogenase.
Quantitative structure-activity relationship (QSAR) studies were performed in order to identify molecular features responsible for the antileishmanial activity of 61 adenosine analogues acting as inhibitors of the enzyme glyceraldehyde 3-phosphate dehydrogenase of Leishmania mexicana (LmGAPDH). Density functional theory (DFT) was employed to calculate quantum-chemical descriptors, while several...
متن کاملAdenosine analogues as inhibitors of Trypanosoma brucei phosphoglycerate kinase: elucidation of a novel binding mode for a 2-amino-N(6)-substituted adenosine.
As part of a project aimed at structure-based design of adenosine analogues as drugs against African trypanosomiasis, N(6)-, 2-amino-N(6)-, and N(2)-substituted adenosine analogues were synthesized and tested to establish structure-activity relationships for inhibiting Trypanosoma brucei glycosomal phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glycerol-3-p...
متن کاملStructure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase.
The bloodstream stage of Trypanosoma brucei and probably the intracellular (amastigote) stage of Trypanosoma cruzi derive all of their energy from glycolysis. Inhibiting glycolytic enzymes may be a novel approach for the development of antitrypanosomatid drugs provided that sufficient parasite versus host selectivity can be obtained. Guided by the crystal structures of human, T. brucei, and Lei...
متن کاملDesign, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors
A new series of peptide-like derivatives containing different aromatic amino acids andpossessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para positionof an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2)inhibitors. The synthetic reactions were based on the solid phase peptide synthesis methodusing Wang resin. One of the analogues, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of medicinal chemistry
دوره 44 13 شماره
صفحات -
تاریخ انتشار 2001